Cognitive Impairment Following Adult Spinal Deformity Surgery

Selim Ayhan¹, Vugar Nabiyev¹, Selcen Yuksel², Montse Domingo-Sabat³, Ferran Pellise⁴, Ahmet Alanay⁵, Francisco Javier Sanchez Perez-Grueso⁶, Frank Kleinstück⁷, Ibrahim Obeid⁸, Emre Acaroglu¹, European Spine Study Group-ESSG

¹ Ankara Spine Center, Ankara, Turkey
² Biostatistics, Yildirim Beyazit University, Ankara, Turkey
³ Fundacio Institut de Recerca Vall d’Hebron, Barcelona, Spain
⁴ Spine Unit, Hospital Universitari Vall d’Hebron, Barcelona, Spain
⁵ Comprehensive Spine Center, Acibadem Maslak Hospital, Istanbul, Turkey
⁶ Spine Unit, Hospital Universitari La Paz, Madrid, Spain
⁷ Spine Center, Schulthess Klinik, Zürich, Switzerland
⁸ Spine Unit, Bordeaux University Hospital, Bordeaux, France
Introduction

• Elderly patients undergoing major surgery may experience cognitive deterioration due to lesser plasticity in their brain tissue

• Postoperative cognitive dysfunction (POCD) – characterized with undefined dysfunction of the memory, concentration and analyse skills*

• Adult Spinal Deformity (ASD) and POCD?

Purpose

To analyze the cognitive abilities of older patients undergoing surgery for spinal deformity before and after the procedure so as to understand whether ASD surgery is associated with POCD
Patients and Methods

• Prospective longitudinal study
• Patients > 50 years
 • ASD surgery - ESSG database
• Parameters
 – Demographical aspects (clinical & surgical)
 – Mini mental state examination (MMSE)
 – HRQOL questionnaires (ODI, SF-36, SRS-22)
• Statistics
 – Descriptive analysis
 – Repeated measures of ANOVA
Results

- Demographical Characteristics (n=90, 6 weeks; n=58, 6 months)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Female / Male (n) (%)</th>
<th>Age (mean)(std. dev.)</th>
<th>Etiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female / Male (n) (%)</td>
<td>71 / 19 (78.9 / 21.1)</td>
<td>67.4 (8.2) years</td>
<td></td>
</tr>
<tr>
<td>Degenerative</td>
<td>36 (40.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idiopathic</td>
<td>34 (37.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Others*</td>
<td>20 (22.2)</td>
<td></td>
<td>failed-back, post-traumatic, scheuermann, neuromuscular, congenital, post-infection</td>
</tr>
</tbody>
</table>

*failed-back, post-traumatic, scheuermann, neuromuscular, congenital, post-infection
Results

- Surgical Characteristics (n=90)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Average</th>
<th>(SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surgery time (min)</td>
<td>240.1</td>
<td>(111.9)</td>
</tr>
<tr>
<td>Estimated blood loss (ml)</td>
<td>1621.2</td>
<td>(1058.7)</td>
</tr>
<tr>
<td>Number of levels fused</td>
<td>11.2</td>
<td>(4.4)</td>
</tr>
<tr>
<td>Length of hospitalization (days)</td>
<td>14.2</td>
<td>(11.45)</td>
</tr>
</tbody>
</table>
Results

• MMSE (n=90, 6 weeks; n=58, 6 months)*

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preop</td>
<td>26.88</td>
<td>2.691</td>
<td>90</td>
</tr>
<tr>
<td>6th Week</td>
<td>27.17</td>
<td>2.474</td>
<td>90</td>
</tr>
<tr>
<td>Preop</td>
<td>26.93</td>
<td>2.815</td>
<td>58</td>
</tr>
<tr>
<td>6th Week</td>
<td>27.34</td>
<td>2.579</td>
<td>58</td>
</tr>
<tr>
<td>6th Month</td>
<td>27.57</td>
<td>2.528</td>
<td>58</td>
</tr>
</tbody>
</table>

(p>0.05)

A decrease of more than 2 points (3 or 4) was observed in 6 patients (6.7%) at both time points

* While taking effect size as 0.245; Type-I error rate 0.05 and correlation among repeated measures as 0.65, the power of this analysis is 0.99
Results

- MMSE (n=58, 6 months)*

* While taking effect size as 0.245; Type-I error rate 0.05 and correlation among repeated measures as 0.65, the power of this analysis is 0.99
Discussion - Summary

• ASD surgery
 – Major
 – Better cognitive functions (MMSE mean score)
 – No statistical difference between time points
 • minor influence of ASD itself on cognitive abilities
 • relatively stable hemodynamic conditions during surgery
Thank you...

- ASD surgery
 - Better cognitive functions (MMSE mean score)
 - No statistical difference between time points

This project has been funded by a research grant from Depuy Synthes Spine Inc. directed to the European Spine Study Group
Disclosures

Ayhan S:
None

Nabiyev V:
Grants/research support: Depuy Synthes, Medtronic

Yuksel S:
Grants/research support: Eurospine

Domingo-Sabat M:
Grants/research support: Depuy Synthes

Pellise F, Perez-Grueso F.J.S.:
Grants/research support: Depuy Synthes, K2M
Consultant: Depuy Synthes

Alanay A:
Grants/research support: Depuy Synthes
Consultant: Depuy Synthes, Stryker, Medtronic

Kleinstück F:
Consultant: Depuy Synthes

Obeid I:
Grants/research support: Depuy Synthes
Consultant: Alfatec Spine, Depuy Synthes, Medtronic

Acaroglu E:
Grants/research support: Fondation Cotrel, Depuy Synthes, Medtronic, Eurospine
Consultant: Medtronic, AOSpine
Stock/shareholder: IncredX

ESSG:
Grants/research support: Depuy Synthes